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Sparse Tensor Decomposition and Khatri-Rao Products

Motivating Application: Given an (N + 1)-dimensional sparse tensor T , compute an

approximate Candecomp / PARAFAC decomposition:

Decomposition of rank R consists of factor matrices Uj ∈ RIj×R, 1 ≤ j ≤ N + 1 to store the

outer product components, vector σ ∈ RR to store generalized singular values. Want to

capture values of nonzero entries AND locations of zero entries. Problem is non-convex

and NP-hard.

Alternating Least-Squares (ALS): Iteratively optimize one factor at a time while keeping the

others constant (also called block coordinate descent). Optimization problem for UN+1 is an

overdetermined linear least-squares problem

min
X

‖AX − B‖F (1)

where A = UN � ... � U1, B is a sparse matrix. � denotes a Khatri-Rao Product (KRP), a

column-wise Kronecker Product of two matrices:
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Least-squares problems of this form also arise in PDE-inverse problems, signal processing,

and compressed sensing.

Leverage Score Sampling

Problem: Design matrix A from Equation (1) has
∏N

j=1 Ij rows. May not even fit in memory!

Solution: Generate random sampling matrix S with J �
∏N

j=1 Ij rows, solve

minX̃

∥∥SAX̃ − SB
∥∥

F
.

Choosing S as a sampling matrix preserves sparsity of B. To guarantee residual within (1 + ε)
of true minimum w.h.p. (1 − δ), sample Õ(R/(εδ)) rows proportional to leverage scores:

`i = A [i, :] (A>A)+A [i, :]>

Central Challenge: How do we sample rows according to the leverage score distribution of

A when even materializing A is too expensive?

Our Contributions

We build a data structure to sample rows from the exponentially tall matrix A in time

logarithmic in its row count and quadratic in its column count from the exact leverage score

distribution. To decompose an (N + 1)-dimensional tensor, our method achieves the lowest

asymptotic runtime for sketched CP decomposition compared to recent SOTAmethods.

Method Complexity per ALS Round

CP-ALS [1] N(N + I)INR
CP-ARLS-LEV [2] N(R + I)RN+1/(εδ)
TNS-CP [3] N 3IR3/(εδ)
GTNE [4] N 2(N 1.5R3.5/ε3 + IR2)/ε2

STS-CP (ours) N(NR3 log I + IR2)/(εδ)

Our method accelerates decomposition of sparse tensors with billions of nonzero entries.

Methodology

Sample rows from U1, ..., UN in sequence, each conditioned on the last.
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Conditional Distribution: q [sk] = p(ŝk = sk | ŝ<k = s<k) ∝ 〈h<kh
>
<k, Uk [sk, :]> Uk [sk, :], G>k〉

Sampling Procedure: Sample r ∼ Unif [0, 1], find
“containing bin” of width qj via binary search.

Root: branch right iff
∑Ik/2

j=0 q [j] < r

Level 2: branch right iff
∑Ik/2

j=0 q [j] +
∑3Ik/4

j=Ik/2 q [j] < r...
q(1) q(2) q(3) q(4) q(5) q(6) q(7) q(8)

Key: For nodes v in search tree corresponding to row interval [S0(v), S1(v)] (up to level

log(Ik/R)), compute and store “partial gram matrix”:

Gv =
S1(v)∑

i=S0(v)

Uk [i, :]> Uk [i, :]

Construction runtime is O(IkR
2)with storage requirement O(IkR). During sampling, comput-

ing the branch decision at each internal node costs O(R2) with cached partial gram matrices.

O(R3) work required below level log(Ik/R), but can improve to O(R2 log R) (see paper). Total
time per sample is O(R2 log Ik).

Runtime Benchmarks

102 103 104 105 106 107

I

10 3

10 2

10 1

100

Ti
m

e 
(s

)

R = 32, N = 3

16 32 64 128
R

0.0

0.5

1.0

1.5

2.0

2.5
I = 222, N=3

2 4 6 8
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7 I = 222, R=32

Construction Sampling

Figure 1. Average Time to Construct Data Structure and Draw 50,000 Samples from Khatri-Rao Product.

Sparse Tensor Experiments
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Figure 2. Accuracy Achieved by CP-ARLS-LEV, STS-CP, and Exact ALS on Sparse Tensor Decomposition,

J = 216 samples for randomized algorithms.
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Figure 3. Fit vs. Time, Reddit Tensor (4.8 billion nonzeros) for CP-ARLS-LEV and STS-CP (ours). Thick lines are

averages of individual traces.
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