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Sparse Kernels in Machine Learning
• Sampled Dense-Dense Matrix Multiplication (SDDMM) and 

Sparse-times-Dense Matrix Multiplication (SpMM) appear in a variety of 
applications:
– Graph Neural Networks with Self-Attention
– Collaborative Filtering with Alternating Least Squares
– Document Clustering by Wordmover’s Distance

• Both kernels involve a single sparse matrix and two (typically tall-
skinny) dense matrices. Typically, applications use both operations in 
sequence.

• When the sparse matrix is the adjacency matrix of a graph, we interpret 
the kernels as follows:
– SDDMM generates a message on each edge
– SpMM aggregates messages from edges incident to each vertex
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Message Generation

Message Aggregation
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Our Contributions

• We design the first distributed-memory implementations of SDDMM based on 
communication-avoiding algorithms for SpMM in the literature. Our implementations benefit 
from additional memory by replicating inputs and outputs.

• We give strategies to elide communication when executing SDDMM and SpMM in 
sequence (FusedMM), eliminating communication and changing the optimal replication factor 
for both kernels.

• We benchmark our algorithms on hundreds of nodes of LBNL Cori, testing with both Erdos-
Renyi random matrices and billion-scale real-world matrices. 
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Distributed-Memory
SDDMM Algorithms
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Symbols
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Symbol Definition
𝑆, 𝑅 𝑚×𝑛 sparse matrices

𝐴 𝑚×𝑟 dense matrix

𝐵 𝑛×𝑟 dense matrix

𝜙 The ratio nnz(𝑆)/𝑛𝑟

∗ Elementwise multiplication

⋅ Matrix Multiplication



Symbols and Definitions
• Given dense matrices 𝐴, 𝐵 of dimensions 𝑚×𝑟, 𝑛×𝑟, respectively, and a sparse matrix 𝑆 of 

dimensions 𝑚×𝑛, define Sampled Dense-Dense Matrix Multiplication as:

SDDMM 𝑆, 𝐴, 𝐵 ≔ S ∗ A ⋅ 𝐵!

• Output has nonzero locations identical to 𝑆
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Symbols and Definitions
• We distinguish between the SpMM operation that multiplies 𝑆 and 𝐴 and the operation that 

multiplies 𝑆! and 𝐵. GNNs, collaborative filtering require both.

• Define SpMMA, SpMMB as:
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SpMMB 𝑆, 𝐴 ≔ 𝑆! ⋅ 𝐴SpMMA 𝑆, 𝐵 ≔ 𝑆 ⋅ 𝐵



Symbols and Definitions

• Applications typically make a call to SDDMM (message generation) and feed the sparse 
output directly to an SpMM operation (message aggregation)

• Define FusedMMA, FusedMMB as compositions of SDDMM with SpMMA, SpMMB

FusedMMA 𝑆, 𝐴, 𝐵 ≔ SpMMA SDDMM S, A, B , B

FusedMM𝐵 𝑆, 𝐴, 𝐵 ≔ SpMMB(SDDMM S, A, B , A)
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Sparsity-Agnostic Distributed SpMM

• Sparsity-agnostic algorithms operate similarly to 
distributed dense GEMM algorithms (Cannon, SUMMA) 
by shifting large blocks 𝐴, 𝐵, and 𝑆. 

• Do not benefit from graph partitioning, rely on random 
permutations of the rows and columns of 𝑆.

• We categorize such algorithms by the choice of which 
submatrices they replicate, propagate, and keep 
stationary
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Converting SpMM Algorithms to SDDMM Algorithms
• SDDMM and SpMM have identical data access patterns. Consider serial algorithms for both 

kernels:
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• Every nonzero (i, j) requires an interaction between row i of A and row j of B. As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for SDDMM with 
identical communication characteristics, and vice-versa.

for 𝑖, 𝑗 ∈ 𝑆
𝑅"# ≔ 𝑆"#(𝐴": ⋅ 𝐵#:!)

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴": += 𝑆"#𝐵#:

A ≔ SpMMA 𝑆, 𝐵



Converting SpMM Algorithms to SDDMM Algorithms
• Consider any distributed algorithm for SpMMA that performs no replication. For all indices 𝑘 ∈
[1, 𝑟], the algorithm must (at some point)
– Co-locate 𝑆"#, 𝐴"$, 𝐵#$ on a single processor
– Perform the update 𝐴"$ += 𝑆"#𝐵#$

• Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is initialized to 0.

2. Change 𝐴 from an input to an output.

3. Have each processor execute the local update: 𝑆"# += 𝐴"$𝐵#$

The resulting algorithm performs SDDMM (up to multiplication with the values 
initially in 𝑺) with communication characteristics and data layout identical to the original.
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Converting SpMM Algorithms to SDDMM Algorithms
• 1.5D and 2.5D SpMM algorithms replicate input / output matrices to reduce communication 

bandwidth (using extra memory)

• Inputs typically replicated via broadcast at the beginning of the algorithm

• Reduction required at the end of the algorithm to sum up temporary accumulation buffers

• We extend our transformation procedure to algorithms with replication by:

– Replacing initial broadcasts of input buffers with terminal reductions of those buffers
– Replacing terminal reductions of output buffers with initial broadcasts
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Communication-Eliding 
Strategies for FusedMM
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A Simple Strategy for Distributed FusedMM
• Consider the FusedMMA operation. The simplest distributed implementation executes the 

SDDMM and feeds the intermediate result to SpMM

• Identical input / output data layouts let us avoid reorganizing 𝐴, 𝐵, and 𝑆

• Still performs replication, propagation for both SDDMM and SpMM
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Communication Elision: Replication Reuse
• We could replicate the same dense input matrix for both SDDMM and SpMM. We call this 

strategy replication reuse

• We save communication by increasing the replication factor relative to the unoptimized 
sequence
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Communication Elision: Local Kernel Fusion
• We could execute a local SDDMM and SpMM on each processor without any intermediate 

communication. We call this strategy local kernel fusion.

• We save communication by decreasing the replication factor compared to the unoptimized 
case
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Communication Elision: Local Kernel Fusion

• Caveat: Cannot apply this strategy for any algorithm that splits the dense matrices by 
columns among processors

• Message generation on each edge must precede aggregation. Cannot begin SpMM with 
partial results on the edges.
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Algorithm Data Movement
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Replication and Propagation Choices
• We design our algorithms by deciding which matrices to replicate, propagate, and keep 

stationary. For the sake of our communication analysis, assume 𝑚 ≈ 𝑛.

• These choices affect the communication complexity of each algorithm

• The optimal algorithm choice depends on the ratio between the nonzero count of the sparse 
matrix and the total entries in either dense matrix, which we define as 𝜙.
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Replication and Propagation Choices
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1.5D Algorithms
• Two variants, both replicating a dense matrix:

– Cyclically shift the dense matrix, keep the 
sparse matrix stationary

– Cyclically shift the sparse matrix, keep 
the dense matrix stationary

• Choice affects the # of words communicated:
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Sparse Shift



2.5D Algorithms
• Two variants, both shifting at least one 

dense matrix:
– Replicate one dense matrix, cyclically 

shift the other dense matrix and a 
sparse matrix

– Replicate the sparse matrix, cyclically 
shift both dense matrices

• # of words communicated:
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Predictions
• When 𝜙 = nnz 𝑆 /𝑛𝑟 is low:

– Communicating the sparse matrix is cheaper
– 1.5D sparse shifting and sparse replicating algorithms should perform faster

• When 𝜙 is high: 
– Communicating the dense matrix is cheaper
– 1.5D dense shifting and 2.5D dense replicating algorithms should perform faster

• For the range of processor counts we consider, 1.5D algorithms usually outperform 2.5D algorithms

• 1.5D communication-eliding FusedMM saves ~30% of overall communication; 2.5D communication-
eliding FusedMM saves 20% of overall communication.
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Experiments
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• Experiments run on Cori, a Cray XC40 at 
Lawrence Berkeley National Laboratory with 256 
Xeon Phi Knight Landing (KNL) nodes

• Each node:
– Has a single CPU with 68 cores
– Runs at 1.4 GHz
– Communicates with other nodes via an Aries 

interconnect arranged using a Dragonfly 
topology

• We use a hybrid MPI + OpenMP programming 
model with a single MPI rank and 68 threads 
node

Platform Details
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Credit: National Energy Research Scientific Computing



Performance for Varying ϕ on Erdos-Renyi Matrices

• For 𝑚 = 𝑛 = 2!! and 32 processors, we vary the nonzero count per row of 𝑆 and the dense matrix 
column count 𝑟 to determine which of our four algorithms performs best

• Prediction closely matches theory: 1.5D dense shifting or 1.5D sparse shifting algorithms are 
optimal, and the choice between the two depends on the ratio 𝜙.
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Strong Scaling
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• Compared our FusedMM implementations to two repeated calls of SpMM from the PetSC library (since there is no 
existing implementation of SDDMM to compare against)

• PetSC only supports 1D partitions of all matrices and does not take advantage  of replication. Leads to poor scaling at 
high processor counts.

• Algorithms tested on several matrices from the SuiteSparse and a significantly denser matrix from computational biology. 
𝑟 = 128 for all experiments

Matrix Side Length Nonzero Count NNZ per Row
amazon-large.mtx 14,249,639 230,788,269 ~16

uk-2002.mtx 18,484,117 298,113,672 ~16
eukarya.mtx 3,243,106 359,744,161 ~111

arabic-2005.mtx 22,744,080 639,999,458 ~28
twitter7.mtx 41,652,230 1,468,365,182 ~35



Strong Scaling
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Predicted vs. Observed Optimal Replication Factor
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Application Benchmark 1: Collaborative Filtering
• Netflix-challenge-type computation: compute a low-rank factorization of a sparse matrix 𝑆 =
𝐴 ⋅ 𝐵! for tall-skinny embedding matrices 𝐴, 𝐵 for the rows and columns.

• Want to minimize squared error norm only on the nonzero entries of 𝑆

• Idea: alternately optimize either 𝐴 or 𝐵, keeping the other matrix fixed. Solve an independent 
least squares problem 𝑀𝑥" = 𝑏" for every row 𝑖 of the unfixed matrix

• Solution: use a Krylov method, conjugate gradients in our case. Use SDDMM / SpMM to 
compute all query vectors 𝑀𝑥" in parallel.
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Application Benchmark 2: Graph Attention Network
• Graph neural networks learn embeddings for each 

node of a graph. The key operation at each layer is 
graph convolution, which aggregates embeddings 
of neighbors of each vertex onto that vertex.

• A single-head GATN weights each edge by some 
function of the incident vertex embeddings. Edge 
weights become coefficients of the aggregation.

• Multi-head GATN: Concatenates the outputs of 
single heads.

• Message generation / aggregation performed by 
SDDMM, SpMM respectively.
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Application Performance Breakdown
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Summary
• We gave a theoretical communication analysis of sparsity-agnostic communication-avoiding 

algorithms for SDDMM and FusedMM

• Our algorithms take advantage of extra memory on nodes by replicating inputs, scaling to 
hundreds of nodes and thousands of cores

• We embedded and tested our algorithms within two applications that use FusedMM

• Further work:
– More effective overlap between communication and local computation
– Implementations with one-sided MPI or RDMA
– Porting implementation to GPUs
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Thank you!
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Read the paper here

Get the code at github.com/PASSIONLab/distributed_sddmm

https://arxiv.org/abs/2203.07673
https://github.com/PASSIONLab/distributed_sddmm


Extra Slides
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Weak Scaling
• We examine scaling behavior when keeping the FLOPs per processor constant.

• Setup 1:
– Processor count doubles for each successive experiment
– The sparse matrix side-length doubles from experiment to experiment
– The nonzero count per row of the sparse matrix remains constant at 32
– The embedding dimension 𝑟 remains constant at 256

• The ratio 𝜙 = nnz 𝑆 /𝑛𝑟 remains constant

• The fraction of nonzeros in the sparse matrix successively decays by a factor of 2

• We expect 𝑝*/, communication scaling 1.5D algorithms and 𝑝*/- scaling for the 2.5D 
algorithms
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Weak Scaling
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• Both local kernel fusion and replication reuse yield communication savings. Local kernel fusion tends to 
outperform replication reuse

– Broadcast collective disproportionately expensive at higher processor counts

Node Count



Weak Scaling: Setup 1 Performance Breakdown
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Weak Scaling: Setup 2
• Setup 2: For each successive experiment,

– Processor count quadruples
– The sparse matrix side length doubles
– The nonzero count per row of the sparse matrix doubles with an initial value of 32
– The embedding dimension 𝑟 remains constant at 256

• The ratio 𝜙 = nnz 𝑆 /𝑛𝑟 successively doubles

• The fraction of nonzeros in the sparse matrix remains constant

• We expect communication to stay constant for 1.5D dense shifting algorithms and even 
decrease for the 2.5D algorithms. Unlikely in practice due to decreasing node locality.
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Weak Scaling: Setup 2
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• Increasing ratio 𝜙 causes poor scaling for the 1.5D sparse shifting algorithm.

• Communication costs of the 1.5D dense shifting algorithm do not depend on 𝜙, leads to better scaling

Node Count



Sparsity-Aware vs. Sparsity-Agnostic SpMM
• We categorize existing SpMM algorithms as either 

sparsity-aware or sparsity-agnostic

• Sparsity-aware algorithms divide the dense and sparse 
matrices evenly among processors. If a processor does 
not own an embedding it needs to process a nonzero, it 
fetches the embedding from the owning processor

• Communication Cost: Modelled by the edge cut metric 
of a hypergraph partition of the sparse matrix

• These methods benefit from graph / hypergraph 
partitioning to reorder nonzeros
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