Leverage-Based Sampling Algorithms for Tensor Decomposition Problems

Vivek Bharadwaj ${ }^{1}$, Osman Asif Malik ${ }^{2}$, Riley Murray ${ }^{3,2,1}$, Laura Grigori ${ }^{4}$, Aydın Buluç ${ }^{2,1}$, James Demmel ${ }^{1}$

[^0]

Summary

First part of this talk covers two works involving CP decomposition:

1. Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition. To appear at NeurIPS 2023: https://arxiv.org/abs/2301.12584
2. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. Under review: https://arxiv.org/abs/2210. 05105

Second part of this talk: emerging extensions of above work to tensor-train decomposition. Collaboration w/ Guillaume Rabusseau, Beheshteh Rakhshan at U. Montreal.

Sparse Tensor Candecomp / PARAFAC Decomposition

Our Goal: Compute an approximate rank- R CP decomposition of an N-dimensional $I \times \ldots \times I$ sparse tensor \mathcal{T} :

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition rank $R \approx 10^{2}$. Assume $\left|I_{j}\right|=I$ for all j and $I \geq R$.

Alternating Least-Squares CP Decomposition

- ALS procedure: Randomly initialize factors U_{1}, \ldots, U_{N}, iteratively optimize one factor at a time while keeping others constant.
- Optimal value for U_{j} :

$$
\operatorname{argmin}_{X}\|A X-B\|_{F}
$$

where

- $A=U_{N} \odot \ldots \odot U_{j+1} \odot U_{j-1} \odot \ldots \odot U_{1}$ is a Khatri-Rao product
- $B=\operatorname{mat}(\mathcal{T}, j)^{\top}$

Randomized Linear Least-Squares

- Apply sketching operator S to both A and B, solve reduced problem

$$
\min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

- Want an (ε, δ) guarantee on solution quality: with high probability $(1-\delta)$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|
$$

- Osman talked about Gaussian / TensorSketch operators. Here, restrict S to be a sampling matrix: selects and reweights rows from A and B.

Effect of Sampling Operator

$$
\min _{U_{j}}\left\|\left[\bigodot_{k \neq j} U_{k}\right] \cdot U_{j}^{\top}-\operatorname{mat}(\mathcal{T}, j)^{\top}\right\|_{F}
$$

Prior Work

- (SPALS, D. Cheng et al. 2016): Sample rows according to approximate leverage score distribution on A. Worst-case exponential in N to achieve (ε, δ) guarantee.
- (CP-ARLS-LEV Larsen \& Kolda 2022): Similar approximation, hybrid random-deterministic sampling strategy and practical improvements.
- (TNS-CP, Malik 2022): Samples from exact leverage distribution with polynomial complexity to achieve (ε, δ) guarantee, but linear dependence on I for each sample.

Our Contributions

Method	Round Complexity (O notation)
CP-ALS	$N(N+I) I^{N-1} R$
CP-ARLS-LEV (2022)	$N(R+I) R^{N} /(\varepsilon \delta)$
TNS-CP (2022)	$N^{3} I R^{3} /(\varepsilon \delta)$
GTNE (2022)	$N^{2}\left(N^{1.5} R^{3.5} / \varepsilon^{3}+I R^{2}\right) / \varepsilon^{2}$
STS-CP (ours, 2023)	$N\left(N R^{3} \log I+I R^{2}\right) /(\varepsilon \delta)$

- We build a data structure with runtime logarithmic in the height of the KRP and quadratic in R to sample from leverage scores of A.
- Yields the STS-CP algorithm: lower asymptotic runtime for randomized CP decomposition than recent SOTA methods (practical too!)

Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its rows. Leverage score ℓ_{i} of row i is

$$
\ell_{i}=A[i,:]\left(A^{\top} A\right)^{+} A[i,:]^{\top}
$$

Theorem (Leverage Score Sampling Guarantees)

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$
\tilde{X}:=\arg \min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

If $J \gtrsim R \max (\log (R / \delta), 1 /(\varepsilon \delta))$, then with probability at least $1-\delta$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|_{F}
$$

Leverage Score Sampling

- For $I=10^{7}, N=3$, matrix A has 10^{21} rows. Can't even index rows with 64 -bit integers.
- Instead: draw a row from each of U_{1}, \ldots, U_{N}, return their Hadamard product.

- Let \hat{s}_{j} be a random variable for the row index drawn from U_{j}. Assume $\left(\hat{s}_{1}, \ldots, \hat{s}_{N}\right)$ jointly follows the leverage score distribution on $U_{1} \odot \ldots \odot U_{N}$.

The Conditional Distribution of \hat{s}_{k}

Theorem

$$
p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{<k}=s_{<k}\right) \propto\left\langle h_{<k} h_{<k}^{\top}, U_{k}\left[s_{k},:\right]^{\top} U_{k}\left[s_{k},:\right], G_{>k}\right\rangle
$$

Key Sampling Primitive

$$
q[i]:=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[i,:]^{\top} U_{k}[i,:], G_{>k}\right\rangle
$$

- Can't compute q entirely - would cost $O\left(I R^{2}\right)$ per sample per mode.
- Imagine we magically had all entries of q - how to sample? Initialize I bins, j 'th has width $q[j]$.
- Choose random real r in $[0,1]$, find "containing bin" i such that

$$
\sum_{j=0}^{i-1} q[j]<r<\sum_{j=0}^{i} q[j]
$$

Binary Tree Inversion Sampling

- Locate bin via binary search (truncated to $\log (I / R)$ levels)
- Root: branch right iff $\sum_{j=0}^{I / 2} q[j]<r$
- Level 2: branch right iff

$$
\sum_{j=0}^{I / 2} q[j]+\sum_{j=I / 2}^{3 I / 4} q[j]<r
$$

Key: Can compute summations quickly if we cache information at each node!

Caching Partial Gram Matrices

Let an internal node v correspond to an interval of rows $[S(v) \ldots E(v)]$.

$$
\begin{align*}
\sum_{j=S(v)}^{E(v)} q[j] & =\sum_{j=S(v)}^{E(v)} C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[j,:]^{\top} U_{k}[j,:], G_{>k}\right\rangle \\
& =C^{-1}\left\langle h_{<k} h_{<k}^{\top}, \sum_{j=S(v)}^{E(v)} U_{k}[j,:]^{\top} U_{k}[j,:], G_{>k}\right\rangle \tag{1}\\
& =C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[S(v): E(v),:]^{\top} U_{k}[S(v): E(v),:], G_{>k}\right\rangle \\
& :=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G^{v}, G_{>k}\right\rangle
\end{align*}
$$

Can compute and store G^{v} for ALL nodes v in time $O\left(I R^{2}\right)$, storage space $O(I R)$. Only have to recompute once per ALS round.

Efficient Sampling after Caching

- At internal nodes, compute
$C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G^{v}, G_{>k}\right\rangle$ in $O\left(R^{2}\right)$ time (read normalization constant from root)
- At leaves, spend $O\left(R^{3}\right)$ time to compute remaining values of q. Can reduce to $O\left(R^{2} \log R\right)$, see paper.

- Complexity per sample: $O\left(N R^{2} \log I\right)$ (summed over all tensor modes).

Runtime Benchmarks (LBNL Perlmutter CPU)

C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP Threads, BLAS3
Construction, BLAS2 Sampling, $J=65,536$ samples.

Accuracy Comparison for Fixed Sample Count

Distributed-Memory High-Performance Implementation

- We give high-performance implementations of STS-CP and CP-ARLS-LEV scaling to thousands of CPU cores.
- Up to 11x speedup over SPLATT
- Several communication / computation optimizations unique to randomized CP decomposition.

Accuracy vs. time, Reddit tensor, $R=100$, 512 cores / 4 Perlmutter CPU nodes, 4.7 billion nonzeros.

Tensor-Train Decomposition

The tensor-train decomposition represents a tensor \mathcal{T} as a contraction between order-3 "tensor-cores".

Tensor Train

j^{\prime} th core has dimensions $R_{j} \times\left|I_{j}\right| \times R_{j+1}$. Represents a tensor with I^{N} elements using $O\left(N I R^{2}\right)$ space when all rank are equal.

Iterative TT Optimization Problems

Sampling from $A_{<j}$

Theorem (Orthonormal Subchain Leverage Sampling)

There exists a data structure that costs $O\left(I R^{3}\right)$ per tensor train core to build / update. For any $1<j \leq N$, the structure can sample a row from $A_{<j}$ proportional to it squared row norm in time

$$
O\left((j-1) R^{2} \log I\right)
$$

Apply same binary tree trick to the left matricizations of each core \mathcal{A}_{j}, exploit orthonormality to reduce complexity. Accelerates TT-ALS.

Ongoing Work

- Looking for further applications of orthonormal tensor train sketch.
- Extension to non-orthonormal case challenging, but potentially rewarding.
- If you have an application involving contraction of an unstructured operator with a tensor-train / MPS, let's talk!

Thank you! Read the work on Arxiv:

https://arxiv.org/abs/2301.12584
https://arxiv.org/abs/2210.05105

[^0]: ${ }^{1}$ Electrical Engineering and Computer Science Department, UC Berkeley
 ${ }^{2}$ Computational Research Division, Lawrence Berkeley National Lab
 ${ }^{3}$ International Computer Science Institute
 4 Institute of Mathematics, EPFL \& Lab for Simulation and Modelling, Paul Scherrer Institute

