

Leverage-Based Sampling Algorithms for Tensor Decomposition Problems

Vivek Bharadwaj ¹, Osman Asif Malik ², Riley Murray ^{3,2,1}, Laura Grigori ⁴, Aydın Buluç ^{2,1}, James Demmel ¹

¹ Electrical Engineering and Computer Science Department, UC Berkeley

- ² Computational Research Division, Lawrence Berkeley National Lab
- ³ International Computer Science Institute

⁴ Institute of Mathematics, EPFL & Lab for Simulation and Modelling, Paul Scherrer Institute

First part of this talk covers two works involving CP decomposition:

- 1. Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition. To appear at NeurIPS 2023: https://arxiv.org/abs/2301.12584
- 2. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. Under review: *https://arxiv.org/abs/2210.05105*

Second part of this talk: emerging extensions of above work to tensor-train decomposition. Collaboration w/ Guillaume Rabusseau, Beheshteh Rakhshan at U. Montreal.

Sparse Tensor Candecomp / PARAFAC Decomposition

Our Goal: Compute an approximate rank-*R* CP decomposition of an *N*-dimensional $I \times ... \times I$ sparse tensor \mathcal{T} :

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition rank $R \approx 10^2$. Assume $|I_j| = I$ for all j and $I \ge R$.

- ALS procedure: Randomly initialize factors $U_1, ..., U_N$, iteratively optimize one factor at a time while keeping others constant.
- Optimal value for U_j :

$$\operatorname{argmin}_X \left\| AX - B \right\|_F$$

where

+ $A=U_N\odot\ldots\odot U_{j+1}\odot U_{j-1}\odot\ldots\odot U_1$ is a Khatri-Rao product

•
$$B = \max(\mathcal{T}, j)^\top$$

• Apply sketching operator S to both A and B, solve reduced problem

$$\min_{\tilde{X}} \left\| SA\tilde{X} - SB \right\|_{F}$$

• Want an (ε, δ) guarantee on solution quality: with high probability $(1 - \delta)$,

$$\left\|A\tilde{X}-B\right\|_F \leq (1+\varepsilon)\min_X \|AX-B\|$$

• Osman talked about Gaussian / TensorSketch operators. Here, restrict *S* to be a *sampling* matrix: selects and reweights rows from *A* and *B*.

Effect of Sampling Operator

- (SPALS, D. Cheng et al. 2016): Sample rows according to approximate leverage score distribution on A. Worst-case exponential in N to achieve (ε, δ) guarantee.
- (CP-ARLS-LEV Larsen & Kolda 2022): Similar approximation, hybrid random-deterministic sampling strategy and practical improvements.
- (TNS-CP, Malik 2022): Samples from exact leverage distribution with polynomial complexity to achieve (ε, δ) guarantee, but linear dependence on *I* for each sample.

Our Contributions

Method	Round Complexity (\tilde{O} notation)
CP-ALS	$N(N+I)I^{N-1}R$
CP-ARLS-LEV (2022)	$N(R+I)R^N/(\varepsilon\delta)$
TNS-CP (2022)	$N^3 I R^3 / (\varepsilon \delta)$
GTNE (2022)	$N^2 (N^{1.5} R^{3.5} / \varepsilon^3 + I R^2) / \varepsilon^2$
STS-CP (ours, 2023)	$N(NR^3\log I + IR^2)/(\varepsilon\delta)$

- We build a data structure with runtime **logarithmic** in the height of the KRP and quadratic in *R* to sample from leverage scores of *A*.
- Yields the STS-CP algorithm: lower asymptotic runtime for randomized CP decomposition than recent SOTA methods (practical too!)

Leverage Score Sampling

We will sample rows i.i.d. from A according to the *leverage score distribution* on its rows. Leverage score ℓ_i of row *i* is

 $\ell_{i} = A\left[i,:\right] (A^{\top}A)^{+}A\left[i,:\right]^{\top}$

Theorem (Leverage Score Sampling Guarantees)

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$\tilde{X} := \arg\min_{\tilde{X}} \left\| SA\tilde{X} - SB \right\|_{F}$$

If $J \gtrsim R \max(\log(R/\delta), 1/(\varepsilon \delta))$, then with probability at least $1 - \delta$,

$$\left\| A\tilde{X} - B \right\|_F \leq \left(1 + \varepsilon \right) \min_X \left\| AX - B \right\|_F$$

Leverage Score Sampling

- For $I = 10^7$, N = 3, matrix A has 10^{21} rows. Can't even index rows with 64-bit integers.
- Instead: draw a row from each of $U_1, ..., U_N$, return their Hadamard product.

• Let \hat{s}_j be a random variable for the row index drawn from U_j . Assume $(\hat{s}_1, ..., \hat{s}_N)$ jointly follows the leverage score distribution on $U_1 \odot ... \odot U_N$.

The Conditional Distribution of \hat{s}_k

Theorem

$$p(\hat{s}_k = s_k \mid \hat{s}_{< k} = s_{< k}) \propto \langle h_{< k} h_{< k}^\top, U_k \left[s_k, : \right]^\top U_k \left[s_k, : \right], G_{> k} \rangle$$

Key Sampling Primitive

$$q\left[i\right] := C^{-1} \langle h_{< k} h_{< k}^\top, U_k\left[i,:\right]^\top U_k\left[i,:\right], \underline{G}_{> k} \rangle$$

- Can't compute q entirely would cost $O(IR^2)$ per sample per mode.
- Imagine we magically had all entries of *q* how to sample? Initialize *I* bins, *j*'th has width *q* [*j*].
- Choose random real r in [0, 1], find "containing bin" i such that

$$\sum_{j=0}^{i-1} q\,[j] < r < \sum_{j=0}^{i} q\,[j]$$

Binary Tree Inversion Sampling

- Locate bin via binary search (truncated to $\log(I/R)$ levels)
- Root: branch right iff $\sum_{j=0}^{I/2} q[j] < r$
- Level 2: branch right iff

$$\sum_{j=0}^{I/2} q\,[j] + \sum_{j=I/2}^{3I/4} q\,[j] < r$$

Key: Can compute summations quickly if we cache information at each node!

Caching Partial Gram Matrices

Let an internal node v correspond to an interval of rows [S(v)...E(v)].

$$\sum_{j=S(v)}^{E(v)} q[j] = \sum_{j=S(v)}^{E(v)} C^{-1} \langle h_{< k} h_{< k}^{\top}, U_{k}[j, :]^{\top} U_{k}[j, :], G_{> k} \rangle$$

$$= C^{-1} \langle h_{< k} h_{< k}^{\top}, \sum_{j=S(v)}^{E(v)} U_{k}[j, :]^{\top} U_{k}[j, :], G_{> k} \rangle$$

$$= C^{-1} \langle h_{< k} h_{< k}^{\top}, U_{k}[S(v) : E(v), :]^{\top} U_{k}[S(v) : E(v), :], G_{> k} \rangle$$

$$:= C^{-1} \langle h_{< k} h_{< k}^{\top}, G^{v}, G_{> k} \rangle$$
(1)

Can compute and store G^v for ALL nodes v in time $O(IR^2)$, storage space O(IR). Only have to recompute once per ALS round.

Efficient Sampling after Caching

• At internal nodes, compute

 $C^{-1}\langle h_{< k}h_{< k}^{\top}, \pmb{G^v}, \pmb{G_{> k}}\rangle$ in $O(R^2)$ time (read normalization constant from root)

- At leaves, spend O(R³) time to compute remaining values of q. Can reduce to O(R² log R), see paper.
- Complexity per sample: $O(NR^2 \log I)$ (summed over all tensor modes).

Runtime Benchmarks (LBNL Perlmutter CPU)

C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP Threads, BLAS3 Construction, BLAS2 Sampling, J = 65,536 samples.

Accuracy Comparison for Fixed Sample Count

ALS Accuracy Comparison for $J = 2^{16}$ samples.

Distributed-Memory High-Performance Implementation

- We give high-performance implementations of STS-CP and CP-ARLS-LEV scaling to thousands of CPU cores.
- Up to 11x speedup over SPLATT
- Several communication / computation optimizations unique to randomized CP decomposition.

Tensor-Train Decomposition

The tensor-train decomposition represents a tensor \mathcal{T} as a contraction between order-3 "tensor-cores".

j'th core has dimensions $R_j \times |I_j| \times R_{j+1}$. Represents a tensor with I^N elements using $O(NIR^2)$ space when all rank are equal.

Iterative TT Optimization Problems

Theorem (Orthonormal Subchain Leverage Sampling)

There exists a data structure that costs $O(IR^3)$ per tensor train core to build / update. For any $1 < j \le N$, the structure can sample a row from $A_{< j}$ proportional to it squared row norm in time

$$O((j-1)R^2\log I)$$

Apply same binary tree trick to the left matricizations of each core A_j , exploit orthonormality to reduce complexity. Accelerates TT-ALS.

- Looking for further applications of orthonormal tensor train sketch.
- Extension to non-orthonormal case challenging, but potentially rewarding.
- If you have an application involving contraction of an unstructured operator with a tensor-train / MPS, let's talk!

Thank you! Read the work on Arxiv:

https://arxiv.org/abs/2301.12584

https://arxiv.org/abs/2210.05105