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Summary

First part of this talk covers two works involving CP decomposition:

1. Fast Exact Leverage Score Sampling from Khatri-Rao Products with
Applications to Tensor Decomposition. To appear at NeurIPS 2023:
https://arxiv.org/abs/2301.12584

2. Distributed-Memory Randomized Algorithms for Sparse Tensor CP
Decomposition. Under review: https://arxiv.org/abs/2210.05105

Second part of this talk: emerging extensions of above work to tensor-train
decomposition. Collaboration w/ Guillaume Rabusseau, Beheshteh Rakhshan at
U. Montreal.
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Sparse Tensor Candecomp / PARAFAC Decomposition

Our Goal: Compute an approximate rank-𝑅 CP decomposition of an
𝑁 -dimensional 𝐼 × ... × 𝐼 sparse tensor 𝒯:

Focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank 𝑅 ≈ 102. Assume ∣𝐼𝑗∣ = 𝐼 for all 𝑗 and 𝐼 ≥ 𝑅.
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Alternating Least-Squares CP Decomposition

• ALS procedure: Randomly initialize factors 𝑈1, ..., 𝑈𝑁 , iteratively optimize one
factor at a time while keeping others constant.

• Optimal value for 𝑈𝑗:
argmin𝑋 ‖𝐴𝑋 − 𝐵‖𝐹

where
• 𝐴 = 𝑈𝑁 ⊙ ... ⊙ 𝑈𝑗+1 ⊙ 𝑈𝑗−1 ⊙ ... ⊙ 𝑈1 is a Khatri-Rao product

• 𝐵 = mat(𝒯, 𝑗)⊤

3



Randomized Linear Least-Squares

• Apply sketching operator 𝑆 to both 𝐴 and 𝐵, solve reduced problem

min�̃� ∥𝑆𝐴�̃� − 𝑆𝐵∥
𝐹

• Want an (𝜀, 𝛿) guarantee on solution quality: with high probability (1 − 𝛿),

∥𝐴�̃� − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖

• Osman talked about Gaussian / TensorSketch operators. Here, restrict 𝑆 to
be a sampling matrix: selects and reweights rows from 𝐴 and 𝐵.
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Effect of Sampling Operator
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Prior Work

• (SPALS, D. Cheng et al. 2016): Sample rows according to approximate
leverage score distribution on 𝐴. Worst-case exponential in 𝑁 to achieve
(𝜀, 𝛿) guarantee.

• (CP-ARLS-LEV Larsen & Kolda 2022): Similar approximation, hybrid
random-deterministic sampling strategy and practical improvements.

• (TNS-CP, Malik 2022): Samples from exact leverage distribution with
polynomial complexity to achieve (𝜀, 𝛿) guarantee, but linear dependence on
𝐼 for each sample.
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Our Contributions

Method Round Complexity (�̃� notation)

CP-ALS 𝑁(𝑁 + 𝐼)𝐼𝑁−1𝑅
CP-ARLS-LEV (2022) 𝑁(𝑅 + 𝐼)𝑅𝑁/(𝜀𝛿)
TNS-CP (2022) 𝑁3𝐼𝑅3/(𝜀𝛿)
GTNE (2022) 𝑁2(𝑁1.5𝑅3.5/𝜀3 + 𝐼𝑅2)/𝜀2

STS-CP (ours, 2023) 𝑁(𝑁𝑅3 log 𝐼 + 𝐼𝑅2)/(𝜀𝛿)

• We build a data structure with runtime logarithmic in the height of the KRP
and quadratic in 𝑅 to sample from leverage scores of 𝐴.

• Yields the STS-CP algorithm: lower asymptotic runtime for randomized CP
decomposition than recent SOTA methods (practical too!)
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Leverage Score Sampling

We will sample rows i.i.d. from 𝐴 according to the leverage score distribution on its
rows. Leverage score ℓ𝑖 of row 𝑖 is

ℓ𝑖 = 𝐴 [𝑖, ∶] (𝐴⊤𝐴)+𝐴 [𝑖, ∶]⊤

Theorem (Leverage Score Sampling Guarantees)
Suppose 𝑆 ∈ ℝ𝐽×𝐼 is a leverage-score sampling matrix for 𝐴 ∈ ℝ𝐼×𝑅, and define

�̃� ∶= arg min
�̃�

∥𝑆𝐴�̃� − 𝑆𝐵∥
F

If 𝐽 ≳ 𝑅 max(log(𝑅/𝛿), 1/(𝜀𝛿)), then with probability at least 1 − 𝛿,

∥𝐴�̃� − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹
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Leverage Score Sampling

• For 𝐼 = 107, 𝑁 = 3, matrix 𝐴 has 1021 rows. Can’t even index rows with 64-bit
integers.

• Instead: draw a row from each of 𝑈1, ..., 𝑈𝑁 , return their Hadamard product.

[0.1   0.5  -0.9   ... 0.3] [0.0   0.1  0.2   ... 0.9] [-0.8   0.3  0.3   ... -0.9] [-0.8   -0.1  0.5   ... 0.7]

U1
U2 U3 U4

• Let ̂𝑠𝑗 be a random variable for the row index drawn from 𝑈𝑗. Assume
( ̂𝑠1, ..., ̂𝑠𝑁) jointly follows the leverage score distribution on 𝑈1 ⊙ ... ⊙ 𝑈𝑁 .
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The Conditional Distribution of ̂𝑠𝑘

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺

𝐺>𝑘 𝐺+

⊛

⊛

PINV

𝑠1

𝑠2 𝑠3

ℎ⊤
<𝑘⊛

Theorem

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘) ∝ ⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑠𝑘, ∶]⊤ 𝑈𝑘 [𝑠𝑘, ∶], 𝐺>𝑘⟩
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Key Sampling Primitive

𝑞 [𝑖] ∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑖, ∶]⊤ 𝑈𝑘 [𝑖, ∶], 𝐺>𝑘⟩

• Can’t compute 𝑞 entirely - would cost 𝑂(𝐼𝑅2) per sample per mode.

• Imagine we magically had all entries of 𝑞 - how to sample? Initialize 𝐼 bins,
𝑗’th has width 𝑞 [𝑗].

• Choose random real 𝑟 in [0, 1], find “containing bin” 𝑖 such that
𝑖−1
∑
𝑗=0

𝑞 [𝑗] < 𝑟 <
𝑖

∑
𝑗=0

𝑞 [𝑗]
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Binary Tree Inversion Sampling

• Locate bin via binary search (truncated
to log(𝐼/𝑅) levels)

• Root: branch right iff ∑𝐼/2
𝑗=0 𝑞 [𝑗] < 𝑟

• Level 2: branch right iff

𝐼/2
∑
𝑗=0

𝑞 [𝑗] +
3𝐼/4
∑

𝑗=𝐼/2
𝑞 [𝑗] < 𝑟

𝑞(1) 𝑞(2) 𝑞(3) 𝑞(4) 𝑞(5) 𝑞(6) 𝑞(7) 𝑞(8)

Key: Can compute summations quickly if we cache information at each node!
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Caching Partial Gram Matrices

Let an internal node 𝑣 correspond to an interval of rows [𝑆(𝑣)...𝐸(𝑣)].
𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑞 [𝑗] =

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘,

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶]⊤ 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶], 𝐺>𝑘⟩

∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝐺𝑣, 𝐺>𝑘⟩

(1)

Can compute and store 𝐺𝑣 for ALL nodes 𝑣 in time 𝑂(𝐼𝑅2), storage space 𝑂(𝐼𝑅).
Only have to recompute once per ALS round.
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Efficient Sampling after Caching

• At internal nodes, compute
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝐺𝑣, 𝐺>𝑘⟩ in 𝑂(𝑅2) time
(read normalization constant from root)

• At leaves, spend 𝑂(𝑅3) time to
compute remaining values of 𝑞. Can
reduce to 𝑂(𝑅2 log 𝑅), see paper.

• Complexity per sample: 𝑂(𝑁𝑅2 log 𝐼)
(summed over all tensor modes).

𝑞(1) 𝑞(2) 𝑞(3) 𝑞(4) 𝑞(5) 𝑞(6) 𝑞(7) 𝑞(8)
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Runtime Benchmarks (LBNL Perlmutter CPU)

102 103 104 105 106 107

I

10 3

10 2

10 1

100

Ti
m

e 
(s

)

R = 32, N = 3

16 32 64 128
R

0.0

0.5

1.0

1.5

2.0

2.5
I = 222, N=3

2 4 6 8
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7 I = 222, R=32

Construction Sampling

C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP Threads, BLAS3
Construction, BLAS2 Sampling, 𝐽 = 65, 536 samples.

15



Accuracy Comparison for Fixed Sample Count
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Distributed-Memory High-Performance Implementation

• We give high-performance
implementations of STS-CP and
CP-ARLS-LEV scaling to
thousands of CPU cores.

• Up to 11x speedup over SPLATT

• Several communication /
computation optimizations unique
to randomized CP decomposition.
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Tensor-Train Decomposition

The tensor-train decomposition represents a tensor 𝒯 as a contraction between
order-3 “tensor-cores”.

Tensor Train

𝑗’th core has dimensions 𝑅𝑗 × ∣𝐼𝑗∣ × 𝑅𝑗+1. Represents a tensor with 𝐼𝑁 elements
using 𝑂(𝑁𝐼𝑅2) space when all rank are equal.
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Iterative TT Optimization Problems

Reshaped TensorDesign Matrix
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Sampling from 𝐴<𝑗

Theorem (Orthonormal Subchain Leverage Sampling)
There exists a data structure that costs 𝑂(𝐼𝑅3) per tensor train core to build /
update. For any 1 < 𝑗 ≤ 𝑁 , the structure can sample a row from 𝐴<𝑗
proportional to it squared row norm in time

𝑂((𝑗 − 1)𝑅2 log 𝐼)

Apply same binary tree trick to the left matricizations of each core 𝒜𝑗, exploit
orthonormality to reduce complexity. Accelerates TT-ALS.
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Ongoing Work

• Looking for further applications of orthonormal tensor train sketch.

• Extension to non-orthonormal case challenging, but potentially rewarding.

• If you have an application involving contraction of an unstructured operator
with a tensor-train / MPS, let’s talk!
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Thank you! Read the work on Arxiv:

https://arxiv.org/abs/2301.12584

https://arxiv.org/abs/2210.05105
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