[Speaker Note]: Will use TT in place of MPS sometimes.
HSDC: Constructing Tensor Trains/MPS

- Given: Tensor A in D dimensions, general fut.
- Giant table (dense)
- Sparse (mostly zero)
- Black-box, on-demand access

Source Paper: π-Cross Approximation for multidimensional! Arrays, Oseledets \& Tyrtyshnikov.

- Produce: MPS approximation $T \quad \omega / \operatorname{cores}\left(T_{1}, T_{2}, \ldots T_{D}\right)$
- Recall: Successive SVD algorithm:

Replace w/ R- SVD [if ranks low], but still "see" whole tensor at step 1.
No sub-exp. runtime algs w/ guaranteed decomposition!
Heuristics: 1) Start w/ random MPS
2) for $i=1 \ldots D$:
optimize core i for $i=D \ldots 1$:
optimize objective I core at optimize core i a time.
3) Repeat step 2 until convergence.

Two perspectives

- Volume maximization
- L2 error minimization

TT-Cross Heuristic: - Simple \sum_{1}^{1} Fast (iterative)
Backbone of functional tensor train algorithms.

- Few guarantees
- Difficult to beat (when A has sufficient structure)

Begin w/ special case: 2D tensor train = low-rak matrix approximation problem.
Briefly pretend that $N \approx 100$

- CUR decomposition (aka cross/skeleton decomposition):

- If A eractly sank- R_{1} then select any lin. indep. Subset of rows I_{1}, cols I_{2}.

Equality holds: $A=C U^{+} R$. Motivation: suppose singular values beyond R

- NOT EXACTLY low-rank: select I_{1}, I_{2} to maximize $|\operatorname{det} U|$.

Intuition: Higher determinant \longleftrightarrow Higher diversity of sampled rows \sum_{i} cols
(NP-Hard.) Settle for a greedy algorithm:
Init: Random I_{1}, I_{2}.
Repeat:- Greedily exchange rows to increase |detu|

- Greedily exduage cols to increase |der U| Repeat.

Other crays to do this:
LU w/ column-pivoting
If: Ridge leverage scores
p.s.d Determinental Point Process Sampling.]

- Ir practice: Use QR decomposition. Nunerial stability in case rank

$$
\begin{aligned}
& \quad \bar{R}=A(:, J) \\
& C=A(I,:), \text { corrine } C=Q T \\
& \text { guan } A_{k+1}=A(: J)
\end{aligned}
$$

Adapt to general MPS: greedy volume maximization on the matricizations of the tensor.
\rightarrow Each set has Cardinality R.

1) Start $w /$ random $I_{1}, I_{2}, \ldots I_{0}$. Sweep left to right, right to left:

2) Caveat: In practice, run marvol on the QR deconposteon of the seberead matisis prevents the case where the sonly are over' estimated.

Sheoren: Given coves $C_{1}, C_{2}, \ldots C_{D}$ from the index sets where $T\left[I_{c j}, I_{s j}\right]$ ronsinguler for $\forall j_{s}$
Norangolar for each

Construct

$$
\begin{aligned}
& \hat{C}_{k}=C_{k} x_{3} \hat{A}_{k}^{-1} \\
& \hat{C}_{1}=C_{1} \hat{A}_{1}
\end{aligned}
$$

Max evaluations of tensor: $R^{2} I$ per core update, $N I R^{2}$ per sweep.
Guarantees
Notice: no monotonically

- Comurges to best fit TT? increasing objective.
- Converges?

But in practice, usually does converge.

- "Fixed point" property?

Alternative view: Alternating Least-Squeres for $i=1 \ldots D$
optimize core i to minimize $\|\tau-A\|_{E}$.
for $i=0-1 \ldots .1$

Surat linear least -squares problem looks like this:

$$
Q-p-Q--Q^{j}-p
$$

Than: There exist shecteling algontho to solve the LSTSQ problem to residual newry \mathcal{E} why ($1-\delta$) in poly - fine.
Proof: Apply a Johrgen - Lindensivawss grans form matrix to
both sides.
[Note: MPS random projections. are useful for a bunch of things].
HSDC Seminar Round 2

- Last time: Volume maximization to construct $T T$-tensor.

Agenda

- Recap : MPS- Cross : Data Plots
- TT-ALS \& Modifications to TT-ALS
- Random Prgections for MPS i: new results.
- Maxuol on each matricization of tensor T, use indices to construct fensor. Start $w /$ random index sets from tensor and then refine.
- Problem: Local minima, only works for the low-errar case.
[Show graphs of $T T$-cross heuristic]
- Joday: Linear least-squares approach/Adapting the tensor-train rank.

Advantages: - Monotonically deceasing objective -Cen be adapted to dead w/

- Parallel, simple
 wissingentries.

Disadvantages: - Too expensive w/ out modifications

- Needs whole tensor* \longrightarrow Randomized alas address this

Cost to solve this: $O\left(I^{4} R^{2}+I R^{4}\right)$ [by $Q R$ decomposition of $L H S$, cost to multiply by Q b backsolve wa Kronecker product R matrix).

$$
\left[\begin{array}{lll}
O^{-} O^{-R} \otimes & \\
I & & Q^{R}
\end{array}\right] \cdot \underset{R \times R}{I} \approx 0_{I \times I \times I}^{I} \approx
$$

Might as well perform TT-SUD so this is not that voe fol.
[Note: this alternating solver also used for eigenvalue problems whee both matrix! vector have MPO/MPS form: DMRG algorithm]
Modifications:

- Missing entries: solve for $\left[T_{1}, \ldots, T_{0}\right]$ representation that mhimizes loss w.r.t. sparse subset of known entries, representation generalizes to the unknown entries.

Solve for each core in time $\underline{O\left(\text { mum }(A) R^{2}\right)}$, system is smaller.

- Adoptive Rank (also applies to TT-ress):

remaining "sopercore" of dimusions $R \times I^{2} \times R$,
Reshape $\rightarrow R I \times R I$

Compute SVD, troncote at appuppride threduld.

New adaptively determined rank.
MPS Random Projections

$$
\min \|A x-b\|_{2}^{2}
$$

$$
\min _{\tilde{x}}\left\|S A_{x}-S b\right\|_{2}^{2}
$$

Expensive. too many rows!
Soln: Apply sketching / sampling matrix to System; [s has for beer rows then adorns].

Close $S 80$ that $\|A \tilde{x}-b\|^{2} \leq(1+\varepsilon) \min _{x}\|A x-b\|^{2}$
How to do this? [subject of active research wi well-known results]

- Turns out S can be (works w/ high probability)
- An i.i.d Gaussian matrix [bot MM ruins speeder]
- A sparse ± 1 random matrix w/ 1 nonzero per column [or serval ninemes]
- An MPS where every cove has [normalized] i.i.d Gaussian radome entries
statistical \& - A sampling matrix where each vow selected $w /$ probability α

$$
l_{i}=A_{i:}\left(A^{\top} A\right)+A_{i!}^{\top}
$$

(Subspace ankedding, low distortion)
Key property: Let $A=U \Sigma V^{\top}$ be SUD of A. Want
$K(S U)$ as small as possible.
[These sketches have other uses, eeg. MPS-rounding].
Intuition: vectors that are orthogonal in original space almost orthogonal in transformed space.

$$
\downarrow
$$

"Embeds" colspace of A into a smaller subspace while preserving distances between vectors.

Key Challenge: How to sketch when A is in teasor train format, B is ingeneral frat (matricized tensor?)
Output Of Sketch: Pow count $O\left(R^{2} \log (\ldots) / \Sigma S\right)$ if colum cont is R^{2}.

Results on Leakage Score Sampling

- Facts: Only $\left.O\left(\frac{R^{2}}{\varepsilon} \log \frac{R}{\delta}\right)\right)$ rows needed for TT

Leverage scores do not depend on obs. matrix B (!)

- Expensive to compute lecrage scores. for A $w) I^{N}$ rows! R^{2} columns,

$O\left(I^{N} R^{4}\right)$ to compute scores.

New Result: Can sample 1 row according to lewsage score disnibution of a TT in conarical form in time $O\left(N R^{2} \log I\right)$, which is time required to form that row.

Tine Complexity of ALS: $O\left(N I^{N} R^{n}\right)$

of when R is small, space usage of dense TT grows quadratically in rank R.
factors

- Cupromise: "See" whish tension eventually, but mote progress taster The TT: SUD (Foll-batch us, stochastic gradient descent)

